Some results on a certain type of difference equation originated from difference Painlevé I equation
نویسندگان
چکیده
منابع مشابه
A period 5 difference equation
The main goal of this note is to introduce another second-order differenceequation where every nontrivial solution is of minimal period 5, namelythe difference equation:xn+1 =1 + xn−1xnxn−1 − 1, n = 1, 2, 3, . . .with initial conditions x0 and x1 any real numbers such that x0x1 6= 1.
متن کاملFUZZY LOGISTIC DIFFERENCE EQUATION
In this study, we consider two different inequivalent formulations of the logistic difference equation $x_{n+1}= beta x_n(1- x_n), n=0,1,..., $ where $x_n$ is a sequence of fuzzy numbers and $beta$ is a positive fuzzy number. The major contribution of this paper is to study the existence, uniqueness and global behavior of the solutions for two corresponding equations, using the concept of Huku...
متن کاملOn meromorphic solutions of certain type of difference equations
We mainly discuss the existence of meromorphic (entire) solutions of certain type of non-linear difference equation of the form: $f(z)^m+P(z)f(z+c)^n=Q(z)$, which is a supplement of previous results in [K. Liu, L. Z. Yang and X. L. Liu, Existence of entire solutions of nonlinear difference equations, Czechoslovak Math. J. 61 (2011), no. 2, 565--576, and X. G. Qi...
متن کاملOn a Difference-delay Equation
We investigate how the behaviour, especially at 1; of continuous real solutions f (t) to the equation f (t) = a 1 f (t + h 1) + a 2 f (t ? h 2); where a 1 ; a 2 ; h 1 ; h 2 are positive real constants, depends on the values of these parameters. Deenitive answers are given, except in certain cases when h 1 =h 2 is rational..
متن کاملOn a max-type and a min-type difference equation
This note shows that every positive solution to the following third order non–autonomous max-type difference equation
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2015
ISSN: 1687-1847
DOI: 10.1186/s13662-015-0618-0